Graphene possesses other amazing characteristics: Its high electron mobility is 100x faster than silicon; it conducts heat 2x better than diamond; its electrical conductivity is 13x better than copper; it absorbs only 2.3% of reflecting light; it is impervious so that even the smallest atom (helium) can't pass through. Planarization technology for single-crystal silicon carbide. This issue is centered on the use of graphene in various applications, including electronics and energy storage. Graphene is a two-dimensional material with unique electronic, thermal, and mechanical properties, making it a promising candidate for a wide range of applications. For example, graphene-based nanomaterials can be used in advanced composites for aerospace and automotive industries, where lightweight and high-strength materials are required. Graphene is also being explored for use in flexible electronics and wearable devices due to its flexibility and transparency. Additionally, graphene's high electrical and thermal conductivity make it an ideal material for heat dissipation in high-power electronic devices.

Plastics are resistant against microbial attack, since during their short time of presence in nature evolution could not design new enzyme. Seymour, 1989). However, plastic waste poses a significant environmental issue due to its prolonged persistence in the natural environment. The decomposition of plastics occurs through biodegradation, which is the breakdown of plastic materials by microorganisms. Biodegradable plastics are designed to be broken down by microorganisms, leading to the formation of harmless byproducts. This process is catalyzed by enzymes produced by microorganisms, which degrade the plastic polymers into smaller molecules.

The use of graphene in nanomedicine is an emerging field that holds promise for improving the therapeutic efficacy and safety of drug delivery systems. Graphene-based nanocarriers can be engineered to target specific tissues and cells, allowing for precise delivery of therapeutic molecules. Additionally, graphene can be used to enhance the stability and biocompatibility of drug delivery systems, reducing the risk of side effects and improving their overall performance.

The widespread use of nanotechnology in the field of biotechnology is revolutionizing medicine and healthcare. Nanomaterials, including graphene, are being used to develop novel therapies and treatments, such as targeted drug delivery systems and diagnostic tools. These advancements are driving the development of new technologies that can address a range of medical conditions, from cancer to infectious diseases.

EUROMAT 2021. EUROMAT is the premier international congress in the field of materials science and technology in Europe. This conference will continue a successful series of material science conferences. The main objective is to foster knowledge transfer and exchange of experiences amongst delegates with a particular focus on materials for energy, the environment, and health. EUROMAT 2021 will provide a platform for researchers, engineers, and industry leaders to discuss the latest developments in materials science and technology, as well as explore new opportunities for collaboration and innovation. The conference will cover a wide range of topics, including but not limited to, sustainable materials, nanomaterials, and advanced manufacturing processes.